Defining a POMDP
As mentioned in the Defining POMDPs and MDPs section, there are various ways to define a POMDP using POMDPs.jl. In this section, we provide more examples of how to define a POMDP using the different interfaces.
There is a large variety of problems that can be expressed as MDPs and POMDPs and different solvers require different components of the POMDPs.jl interface to be defined. Therefore, these examples are not intended to cover all possible use cases. When developing a problem and you have an idea of what solver(s) you would like to use, it is recommended to use POMDPLinter to help you to determine what components of the POMDPs.jl interface need to be defined. Reference the Checking Requirements section for an example of using POMDPLinter.
CryingBaby Problem Definition
For the examples, we will use the CryingBaby problem from Algorithms for Decision Making by Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray.
This crying baby problem follows the description in Algorithms for Decision Making and is different than BabyPOMDP
defined in POMDPModels.jl.
From Appendix F of Algorithms for Decision Making:
The crying baby problem is a simple POMDP with two states, three actions, and two observations. Our goal is to care for a baby, and we do so by choosing at each time step whether to feed the baby, sing to the baby, or ignore the baby.
The baby becomes hungry over time. We do not directly observe whether the baby is hungry; instead, we receive a noisy observation in the form of whether the baby is crying. The state, action, and observation spaces are as follows:
\[\begin{align*} \mathcal{S} &= \{\text{sated}, \text{hungry} \}\\ \mathcal{A} &= \{\text{feed}, \text{sing}, \text{ignore} \} \\ \mathcal{O} &= \{\text{crying}, \text{quiet} \} \end{align*}\]
Feeding will always sate the baby. Ignoring the baby risks a sated baby becoming hungry, and ensures that a hungry baby remains hungry. Singing to the baby is an information-gathering action with the same transition dynamics as ignoring, but without the potential for crying when sated (not hungry) and with an increased chance of crying when hungry.
The transition dynamics are as follows:
\[\begin{align*} & T(\text{sated} \mid \text{hungry}, \text{feed}) = 100\% \\ & T(\text{hungry} \mid \text{hungry}, \text{sing}) = 100\% \\ & T(\text{hungry} \mid \text{hungry}, \text{ignore}) = 100\% \\ & T(\text{sated} \mid \text{sated}, \text{feed}) = 100\% \\ & T(\text{hungry} \mid \text{sated}, \text{sing}) = 10\% \\ & T(\text{hungry} \mid \text{sated}, \text{ignore}) = 10\% \end{align*}\]
The observation dynamics are as follows:
\[\begin{align*} & O(\text{crying} \mid \text{feed}, \text{hungry}) = 80\% \\ & O(\text{crying} \mid \text{sing}, \text{hungry}) = 90\% \\ & O(\text{crying} \mid \text{ignore}, \text{hungry}) = 80\% \\ & O(\text{crying} \mid \text{feed}, \text{sated}) = 10\% \\ & O(\text{crying} \mid \text{sing}, \text{sated}) = 0\% \\ & O(\text{crying} \mid \text{ignore}, \text{sated}) = 10\% \end{align*}\]
The reward function assigns $−10$ reward if the baby is hungry, independent of the action taken. The effort of feeding the baby adds a further $−5$ reward, whereas singing adds $−0.5$ reward. As baby caregivers, we seek the optimal infinite-horizon policy with discount factor $\gamma = 0.9$.
QuickPOMDP Interface
using POMDPs
using POMDPTools
using QuickPOMDPs
quick_crying_baby_pomdp = QuickPOMDP(
states = [:sated, :hungry],
actions = [:feed, :sing, :ignore],
observations = [:quiet, :crying],
initialstate = Deterministic(:sated),
discount = 0.9,
transition = function (s, a)
if a == :feed
return Deterministic(:sated)
elseif s == :sated # :sated and a != :feed
return SparseCat([:sated, :hungry], [0.9, 0.1])
else # s == :hungry and a != :feed
return Deterministic(:hungry)
end
end,
observation = function (a, sp)
if sp == :hungry
if a == :sing
return SparseCat([:crying, :quiet], [0.9, 0.1])
else # a == :ignore || a == :feed
return SparseCat([:crying, :quiet], [0.8, 0.2])
end
else # sp = :sated
if a == :sing
return Deterministic(:quiet)
else # a == :ignore || a == :feed
return SparseCat([:crying, :quiet], [0.1, 0.9])
end
end
end,
reward = function (s, a)
r = 0.0
if s == :hungry
r += -10.0
end
if a == :feed
r += -5.0
elseif a == :sing
r+= -0.5
end
return r
end
)
Explicit Interface
using POMDPs
using POMDPTools
struct CryingBabyState # Alternatively, you could just use a Bool or Symbol for the state.
hungry::Bool
end
struct CryingBabyPOMDP <: POMDP{CryingBabyState, Symbol, Symbol}
p_sated_to_hungry::Float64
p_cry_feed_hungry::Float64
p_cry_sing_hungry::Float64
p_cry_ignore_hungry::Float64
p_cry_feed_sated::Float64
p_cry_sing_sated::Float64
p_cry_ignore_sated::Float64
reward_hungry::Float64
reward_feed::Float64
reward_sing::Float64
discount_factor::Float64
end
function CryingBabyPOMDP(;
p_sated_to_hungry=0.1,
p_cry_feed_hungry=0.8,
p_cry_sing_hungry=0.9,
p_cry_ignore_hungry=0.8,
p_cry_feed_sated=0.1,
p_cry_sing_sated=0.0,
p_cry_ignore_sated=0.1,
reward_hungry=-10.0,
reward_feed=-5.0,
reward_sing=-0.5,
discount_factor=0.9
)
return CryingBabyPOMDP(p_sated_to_hungry, p_cry_feed_hungry,
p_cry_sing_hungry, p_cry_ignore_hungry, p_cry_feed_sated,
p_cry_sing_sated, p_cry_ignore_sated, reward_hungry,
reward_feed, reward_sing, discount_factor)
end
POMDPs.actions(::CryingBabyPOMDP) = [:feed, :sing, :ignore]
POMDPs.states(::CryingBabyPOMDP) = [CryingBabyState(false), CryingBabyState(true)]
POMDPs.observations(::CryingBabyPOMDP) = [:crying, :quiet]
POMDPs.stateindex(::CryingBabyPOMDP, s::CryingBabyState) = s.hungry ? 2 : 1
POMDPs.obsindex(::CryingBabyPOMDP, o::Symbol) = o == :crying ? 1 : 2
POMDPs.actionindex(::CryingBabyPOMDP, a::Symbol) = a == :feed ? 1 : a == :sing ? 2 : 3
function POMDPs.transition(pomdp::CryingBabyPOMDP, s::CryingBabyState, a::Symbol)
if a == :feed
return Deterministic(CryingBabyState(false))
elseif s == :sated # :sated and a != :feed
return SparseCat([CryingBabyState(false), CryingBabyState(true)], [1 - pomdp.p_sated_to_hungry, pomdp.p_sated_to_hungry])
else # s == :hungry and a != :feed
return Deterministic(CryingBabyState(true))
end
end
function POMDPs.observation(pomdp::CryingBabyPOMDP, a::Symbol, sp::CryingBabyState)
if sp.hungry
if a == :sing
return SparseCat([:crying, :quiet], [pomdp.p_cry_sing_hungry, 1 - pomdp.p_cry_sing_hungry])
elseif a== :ignore
return SparseCat([:crying, :quiet], [pomdp.p_cry_ignore_hungry, 1 - pomdp.p_cry_ignore_hungry])
else # a == :feed
return SparseCat([:crying, :quiet], [pomdp.p_cry_feed_hungry, 1 - pomdp.p_cry_feed_hungry])
end
else # sated
if a == :sing
return SparseCat([:crying, :quiet], [pomdp.p_cry_sing_sated, 1 - pomdp.p_cry_sing_sated])
elseif a== :ignore
return SparseCat([:crying, :quiet], [pomdp.p_cry_ignore_sated, 1 - pomdp.p_cry_ignore_sated])
else # a == :feed
return SparseCat([:crying, :quiet], [pomdp.p_cry_feed_sated, 1 - pomdp.p_cry_feed_sated])
end
end
end
function POMDPs.reward(pomdp::CryingBabyPOMDP, s::CryingBabyState, a::Symbol)
r = 0.0
if s.hungry
r += pomdp.reward_hungry
end
if a == :feed
r += pomdp.reward_feed
elseif a == :sing
r += pomdp.reward_sing
end
return r
end
POMDPs.discount(pomdp::CryingBabyPOMDP) = pomdp.discount_factor
POMDPs.initialstate(::CryingBabyPOMDP) = Deterministic(CryingBabyState(false))
explicit_crying_baby_pomdp = CryingBabyPOMDP()
Generative Interface
This crying baby problem should not be implemented using the generative interface. However, this example is provided for pedagogical purposes.
using POMDPs
using POMDPTools
using Random
struct GenCryingBabyState # Alternatively, you could just use a Bool or Symbol for the state.
hungry::Bool
end
struct GenCryingBabyPOMDP <: POMDP{GenCryingBabyState, Symbol, Symbol}
p_sated_to_hungry::Float64
p_cry_feed_hungry::Float64
p_cry_sing_hungry::Float64
p_cry_ignore_hungry::Float64
p_cry_feed_sated::Float64
p_cry_sing_sated::Float64
p_cry_ignore_sated::Float64
reward_hungry::Float64
reward_feed::Float64
reward_sing::Float64
discount_factor::Float64
GenCryingBabyPOMDP() = new(0.1, 0.8, 0.9, 0.8, 0.1, 0.0, 0.1, -10.0, -5.0, -0.5, 0.9)
end
function POMDPs.gen(pomdp::GenCryingBabyPOMDP, s::GenCryingBabyState, a::Symbol, rng::AbstractRNG)
if a == :feed
sp = GenCryingBabyState(false)
else
sp = rand(rng) < pomdp.p_sated_to_hungry ? GenCryingBabyState(true) : GenCryingBabyState(false)
end
if sp.hungry
if a == :sing
o = rand(rng) < pomdp.p_cry_sing_hungry ? :crying : :quiet
elseif a== :ignore
o = rand(rng) < pomdp.p_cry_ignore_hungry ? :crying : :quiet
else # a == :feed
o = rand(rng) < pomdp.p_cry_feed_hungry ? :crying : :quiet
end
else # sated
if a == :sing
o = rand(rng) < pomdp.p_cry_sing_sated ? :crying : :quiet
elseif a== :ignore
o = rand(rng) < pomdp.p_cry_ignore_sated ? :crying : :quiet
else # a == :feed
o = rand(rng) < pomdp.p_cry_feed_sated ? :crying : :quiet
end
end
r = 0.0
if sp.hungry
r += pomdp.reward_hungry
end
if a == :feed
r += pomdp.reward_feed
elseif a == :sing
r += pomdp.reward_sing
end
return (sp=sp, o=o, r=r)
end
POMDPs.initialstate(::GenCryingBabyPOMDP) = Deterministic(GenCryingBabyState(false))
gen_crying_baby_pomdp = GenCryingBabyPOMDP()
Probability Tables
For this implementation we will use the following indexes:
- States
:sated
= 1:hungry
= 2
- Actions
:feed
= 1:sing
= 2:ignore
= 3
- Observations
:crying
= 1:quiet
= 2
using POMDPModels
T = zeros(2, 3, 2) # |S| x |A| x |S'|, T[sp, a, s] = p(sp | a, s)
T[:, 1, :] = [1.0 1.0;
0.0 0.0]
T[:, 2, :] = [0.9 0.0;
0.1 1.0]
T[:, 3, :] = [0.9 0.0;
0.1 1.0]
O = zeros(2, 3, 2) # |O| x |A| x |S'|, O[o, a, sp] = p(o | a, sp)
O[:, 1, :] = [0.1 0.8;
0.9 0.2]
O[:, 2, :] = [0.0 0.9;
1.0 0.1]
O[:, 3, :] = [0.1 0.8;
0.9 0.2]
R = zeros(2, 3) # |S| x |A|
R = [-5.0 -0.5 0.0;
-15.0 -10.5 0.0]
discount = 0.9
tabular_crying_baby_pomdp = TabularPOMDP(T, R, O, discount)